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Abstract
The problem of electron transport through a graphene-based device is studied theoretically and
numerically. The device is composed of a single central site, with a single energy level, which is
connected to a one-dimensional lead, and a two-dimensional graphene sheet. The
nonequilibrium Green function formalism is utilized in modeling the problem; the formulation
and numerical calculations are carried out around a K -point, in the band structure of the
graphene, where the Fermi energy is located. Particular importance is placed on the
transmission and current–voltage (I –V ) characteristics of the device under a small bias. We
find that the graphene part causes the central transmission peak, originally due to the single
energy level of the central site, to split into two peaks, leaving an anti-resonant,
zero-transmission, dip between them; only one of these peaks contributes to the resultant
current. There always appears an almost flat, practically zero-current, region on a rather large
bias interval, centered around the Fermi energy of the graphene, in the I –V graphs.

1. Introduction and the model studied

Perhaps beginning from the work of Wallace [1], graphene,
a single layer of carbon atoms packed densely into a
honeycomb structure, has played the key role in investigating
the properties of numerous carbon-based materials such as
graphite, fullerenes, nanotubes, etc [2]. Although until very
recently they were reckoned to be unstable, and therefore not
to exist, in 2004 Novoselov et al [3, 4] managed to obtain
very thin graphitic sheets, and even a single layer of graphene
sheet. This achievement has opened up new possibilities to
fabricate many novel submicron-devices from graphene sheet
due to its unprecedented versatility. They reported that the
graphitic films have turned out to be of very high crystal
quality, (semi)metallic, continuous on a macroscopic scale,
and, most importantly, stable under ambient conditions. They
pointed out that electronic transport in such a two-dimensional
(2D) film would be ballistic at submicrometer distances. It was
observed in a later experimental study [5] that the conductivity

of graphene never falls below a minimum, no matter how small
the concentrations of charge carriers are.

Electronic properties of graphene are markedly different
from those of conventional 2D materials such as a metal
surface, GaAs/GaAlAs superlattice, surface of liquid helium
4, etc [6, 7]. The difference is caused primarily by the
unique band structure of graphene, in which the conduction
and valance bands osculate at two (inequivalent) hexagonal
Brillouin zone corners, called the K -, or Dirac, point.
At low energies the 2D energy dispersion relation of
graphene can be shown to be linear. It has been shown
that it is the Dirac’s relativistic equation (also called the
Weyl equation) that governs the dynamics of the electron
transport in graphene at low energies, for the charge carriers
in graphene, with their zero rest-mass, imitate relativistic
particles and have an effective ‘speed of light’ of the
order of 106 m s−1 [5, 6]. Graphene’s unusual properties
make graphene-based materials, as opposed to silicon-based
ones, so promising that they are expected to be the new
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(a) (b)

Figure 1. (a) The system under study. (b) The energy-band diagram
for the system in which the voltage bias is eV > 0. The left (right)
side is for the LDOS of the 1D (2D) part; the bold line in the middle
is for the energy level of the central site.

foundation stone for the near future submicron electronic
devices [8–10].

In this work we deal with the problem of electron transport
through a graphene-based mesoscopic device. The system that
we consider within the nearest-neighbor tight-binding scheme
is composed of a semi-infinite 1D lead with the hopping energy
t1, an infinitely-large 2D graphene layer with t2, and between
and coupled to them a single site with the on-site energy εc,
as is depicted in figure 1(a). The system is biased at a voltage
V , at low temperature, by an external source–drain mechanism
which is in contact with the 1D and 2D parts (not shown).
Our purpose is to investigate the transmission properties and
the current–voltage (I –V ) characteristics of such a device.
Envisaging the 1D lead being the tip part, the system under
consideration might be regarded as a simple model to study
an adatom on a 2D graphene sheet in a scanning tunneling
microscopy (STM) experiment. By laying down the rudiments
of such a simple system, our principle aim is to provide
valuable insights into similar but more complicated systems
which are expected to be commonplace in the not-too-distant
future.

The presence of an external bias requires that the device
be treated as a nonequilibrium system. The tunneling current
through such a system has been derived by Caroli et al
[11] by means of the nonequilibrium Green function (NEGF)
formalism invented by Keldysh [12]. In this work we also
make use of Caroli’s well established formulation to explore
especially the effects of the 2D graphene part on the transport
properties of the system.

2. Formulation

The total Hamiltonian associated with the system in figure 1(a)
is

H = H1 + H2 + Hc + HT (1)

where
H1 = μ1

∑

j

c†
j c j − t1

∑

〈 j,i〉
c†

j ci , (2)

H2 = μ2

∑

j

a†
j a j − t2

∑

〈 j,i〉
a†

j ai , (3)

Hc = εcd†
1 d1, (4)

HT = (v1c†
0d1 + v2a†

2d1) + H.c. (5)

Here H1, H2, and Hc are the respective Hamiltonians
describing the electron motion in the 1D, 2D, and central
parts. We assume that the electrochemical potentials of the
1D and 2D parts, μ1 and μ2, respectively, do not depend on
the site indices, and that the two atoms in the graphene unit
cell are treated as identical. The potential difference between
the 1D and 2D parts is related to the applied voltage bias as
μ1 − μ2 = eV . The usual creation operators for the electron
in the 1D, 2D, and central parts are respectively designated by
c†

j , a†
j , and d†

1 , which satisfy the anti-commutation relations

{ci , c†
j } = δi j , {ai , a†

j } = δi j , and {d1, d†
1 } = 1. The transfer

Hamiltonian HT describes the electron hopping between the
central site and the 1D and 2D parts. The hopping energies
between sites j = 0 and 1 and between j = 1 and 2 are given
by v1 and v2, respectively.

As the form of total Hamiltonian (1) suggests, in this
work we neglect the electron–phonon and the phonon mediated
electron–phonon interactions due to the 2D graphene part, and
the Coulomb interaction at the central site. We assume that a
gate is coupled to the central site so intimately that the single
energy level εc is unchanged by the source–drain mechanism
and is kept constant all the time. We also take the hopping
energies v1 and v2 to be constant by assuming that the single
electron charging energy associated with the central site is at
most comparable to kBT , where T is temperature. In this
respect temperature in this work is assumed to be sufficiently
small to exclude all the temperature-dependent effects, but
sufficiently high to just avoid the Coulomb blockade regime,
because our aim in this study is to focus on the effects due
largely to the special band structure of graphene.

In Caroli’s treatment the transfer Hamiltonian HT is
regarded as a perturbation, and the steady current through the
system is expressed as [11]

I = 4e

h

∫ ∞

−∞
dε|Gr

11(ε)|2�1(ε)�2(ε)

× [ f (ε − μ1) − f (ε − μ2)], (6)

where f (ε−μi) = 1/{1+exp[β(ε−μi)]}, with β = 1/kBT , is
the Fermi–Dirac distribution function for the 1D and 2D parts.
The functions

�1(ε) = π |v1|2ρ( j, ε)

∣∣∣∣
j=0

and

�2(ε) = π |v2|2ρ( j, ε)

∣∣∣∣
j=2

(7)

are related respectively to the tunneling rate between the
central site and the 1D and 2D parts, with

ρ( j, ε) = − Im gr
j j(ε)/π (8)

being the local density of states (LDOS) at site j , where
gr

j j is the unperturbed retarded Green function for 1D and/or
2D parts. Finally in equation (6) is the full retarded Green
function, Gr

11(ε), for the central site whose calculation is
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Figure 2. Plots of the real and imaginary parts of (a) gr
00(ε), given by equations (10) and (11), and (b) gr

22(ε), given by equations (18)
and (19).

carried out in the presence of the coupling of the central site
to the 1D and 2D parts, and it follows from the Keldysh Green
function technique [12] as

Gr
11(ε) = [1 − |v1|2gr

11(ε)gr
00(ε)

− |v2|2gr
11(ε)gr

22(ε)]−1gr
11(ε), (9)

which has the same form as that in Caroli’s work [11]. This
result expresses the level broadening effect (the broadening of
the single discrete energy level εc into a continuous density
of states) which comes unavoidably with the coupling of the
central site, j = 1, to the 1D and 2D parts; we later expound
more on this.

As equations (6)–(9) imply, the unperturbed Green
functions for the 1D, 2D, and central parts are the key
ingredients in the calculation of any quantity of interest for
the system under consideration. The real and imaginary parts
of the edge Green function gr

00(ε) for the 1D part have been
calculated in a previous work of ours [13]:

Re gr
00(ε) = 1

t1

{
α(ε) − sgn[α(ε)]θ [α(ε)2 − 1]

×
√

α(ε)2 − 1
}

, (10)

Im gr
00(ε) = − 1

t1
θ [1 − α(ε)2]

√
1 − α(ε)2, (11)

where α(ε) = (ε − μ1)/2t1. The graphs of equations (10)
and (11) are plotted in figure 2(a). The LDOS at the edge site,
ρ( j, ε)| j=0, possesses a semi-elliptic shape with a bandwidth
of 4t1. The reader is to notice that these results are essentially
the same as those in the chemisorption theory [14–17].

The usual Fourier transform of igr
11(t) = θ(t)〈{d1(t),

d†
1 (0)}〉 gives the Green function gr

11(ε) for the isolated central
site as

gr
11(ε) = 1/(ε − εc + i0+). (12)

As to the 2D graphene part, we choose the xy-plane to be
parallel to that of the graphene; the eigenvalues associated with
the unperturbed Hamiltonian (3) are then obtained as [1, 2]

εsq = μ2 + st2

[
1 + 4 cos

(
3a

2
qx

)
cos

(√
3a

2
qy

)

+ 4 cos2

(√
3a

2
qy

)]1/2

, (13)

(a) (b) (c)

Figure 3. (a) The direct lattice of graphene, and (b) its reciprocal
lattice; ai and bi are the respective basis vectors. Also given in (c) is
the first Brillouin zone, where the radius of the dotted circle is kc.

where s = +1 (−1) is for the conduction (valence) band, and
a is the lattice constant in the real space. We next write the
Fourier transform of the unperturbed Green function for the
graphene at site 2, i.e., igr

22(t) = θ(t)〈{a2(t), a†
2(0)}〉, with the

annihilation operator, a2 = 1√
N

∑
q eiq·r2 aq, where N is the

number of unit cells to be included in the calculation:

gr
22(ε) = 1

N
∑

s=±1

N1/2∑

q1=−N1/2

N2/2∑

q2=−N2/2

1

ε − εsq + i0+ , (14)

where N = N1N2, and q1 and q2 are the components of the
wavevector q along the reciprocal basis vectors, see figure 3(b):
q = q1b1 + q2b2 = qxex + qyey . For large N the discrete
summations in equation (14) over q1 and q2 can be cast down
to an integral over the first Brillouin zone (FBZ); the result is

gr
22(ε) = 1


∗
∑

s=±1

∫ ∫

FBZ

dqx dqy

ε − εsq + i0+ , (15)

where 
∗ is the area of the FBZ which is related to the area

 = 3

√
3a2/2 of the unit cell of the real space via 

∗ =

(2π)2.
In this work we focus on the transport properties of

the electrons possessing a momentum only in the immediate
vicinity of a K -point in the FBZ with a wavevector K;
see figure 3(b). Consequently, it suffices to Taylor expand
equation (13) around such a K -point. The result is a linear
energy dispersion relation [1, 2]

εsk � μ2 + sγ k for ka � 1, (16)

3
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where k is measured from a K -point as k = q − K, k = |k|,
and γ = 3at2/2 is the so-called effective ‘speed of light’. In
this approximation, the integral in equation (15) can be taken
as

gr
22(ε) � 1


∗
∑

s=±1

∫ ∫

nearK

dkx dky

ε − εsk + i0+

= 2


∗
∑

s=±1

∫ kc

0

∫ 2π

0

k dk dθ

ε − εsk + i0+ ,

so that

gr
22(ε) = 


π

∑

s=±1

∫ kc

0

k dk

ε − μ2 − sγ k + i0+ , (17)

where we have introduced, after Wang et al [18], a cut-off
momentum kc which is the radius of the circle centered at a
K -point (see figure 3(c)), and is chosen in such a way that
it is much smaller than the reciprocal lattice constant, i.e.,
kc � 4π/3a. We then carry out the integral in equation (17) to
get the real and imaginary parts of gr

22(ε) as

Re gr
22(ε) = 
(ε − μ2)

πγ 2
ln

∣∣∣∣1 + 1

(ε − μ2)2/D2 − 1

∣∣∣∣ , (18)

Im gr
22(ε) = −
 |ε − μ2|

γ 2
θ [1 − (ε − μ2)

2/D2], (19)

where we have defined, for further convenience, D = γ kc as
being the cut-off energy. The condition kc � 4π/3a then
leads to D � 2π t2. We choose D/t2 = 3.0 throughout the
present work, which is good enough to obtain all the important
results presented in this work. In figure 2(b) are the graphs of
equations (18) and (19). It follows from equations (8) and (19)
that the LDOS at site 2 on the graphene possesses the renowned
V-shaped feature around ε = μ2.

We note that Green functions (10)–(12), (18), and (19)
depend in general on the applied bias voltage via the
electrochemical potential of the 1D and 2D graphene parts,
μ1 and μ2, respectively, and on the on-site energy of the
central part, εc. In order to obtain the I –V characteristics of
the system, the voltage profile should be determined from the
outset. In the present work we adopt the symmetrical voltage
profile shown in figure 1(b), which is given by

μ1 = eV/2, μ2 = −eV/2, εc = 0, (20)

where we have set the origin of energy as the Fermi energy at
equilibrium. This profile seems most appropriate in describing
the role of the 1D and graphene parts connected to an external
source–drain mechanism, for both parts will then maintain a
good number of electrons, necessary for a non-zero current,
even under a small bias voltage.

3. Numerical results, discussions, and conclusions

Since at low temperature the Fermi–Dirac distribution function
approaches the step function, i.e., f (x) = [1 + exp(x)]−1 →
θ(−x), the general expression (6) for the tunneling current

through the system is then reduced to, with the potential
profile (20),

I (V ) = e

h

∫ eV/2

−eV/2
d εT (ε, V ) (21)

with the transmission probability

T (ε, V ) = 4|Gr
11(ε)|2�1(ε)�2(ε) (22)

= 4�1(ε)�2(ε)

[ε − �1(ε) − �2(ε)]
2 + [�1(ε) + �2(ε)]2

. (23)

Here the functions �1(ε) and �2(ε) are respectively defined
by

�1(ε) = |v1|2 Re gr
00(ε) and

�2(ε) = |v2|2 Re gr
22(ε).

(24)

Although the current expression (21), with (22), appears
to possess the same form as that for a non-interacting
region connected to two leads [11, 19, 20], we note some
significant differences. Firstly, Gr

11(ε) and �1(2)(ε) are voltage
dependent; so is, in turn, the transmission probability (22).
Consequently, a pure analytic study of the system under
question is intractable; this is one of the reasons for why we,
in this work, resort to a numerical calculation. Secondly, the
tunneling rates of the 1D and graphene parts are not equal,
i.e., �1(ε) 
= �2(ε), so that they contribute differently to
the transmission probability and current. In this respect, the
present study provides a good opportunity to investigate the
effect of ‘leads’ on the transmission properties of the system.
Finally, the wide-band limit, which reduces the observable
quantities of interest to simpler analytical forms [20], is not
applicable to �2(ε), for it is not differentiable at ε = μ2; we
can use the wide-band limit only for �1(ε) for small voltage
biases. Remembering that we are interested especially in a
K -point, i.e., in a small energy interval around ε = μ2, it
would be nice if we could fully use the wide-band limit, at
least to obtain some closed analytical results. But the situation
without the wide-band limit in this work is not at all as adverse
as it appears at first glance. As soon as we decide to use a
numerical calculation, the present model is already capable of
giving exact results, within the numerical accuracy used.

The transmission probability (22) has three ingredients:
�1(2)(ε) and Gr

11(ε). The former two convey to T (ε, V ), via
equations (7) and (8), the information about the LDOS at sites
0 and 2 so that they are exclusively pertaining to the 1D and
2D parts. The latter, Gr

11(ε), on the other hand, performs
two significant tasks. First, setting v1 and v2, which mediate
the coupling of the 1D and 2D parts to the central site, equal
to zero in equation (9), we obtain Gr

11(ε)|v1=v2=0 = gr
11(ε),

equation (12). Therefore, Gr
11(ε) contains the blueprint for

the LDOS of the isolated central site. Second, it follows from
equation (9) that Gr

11(ε) also describes every possible path for
the electron transport beginning from site 1 and ending again
at site 1 in the presence of the 1D and 2D parts. In this sense
Gr

11(ε) plays one of the most crucial roles in this work; if we
drew the graph of |Gr

11(ε)|2, at zero voltage bias, we would
see a peak around ε = εc = 0, corresponding in energy to the
eigenvalue of the isolated central site. This peak would not be
literally a delta function, corresponding to |gr

11(ε)|2, any more,

4
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Figure 4. Transmission probability T (ε, V ) for v1 = 0.3. In the inset in (a) are the magnified portions of the same graphs around ε = 0.0.

as may be expected, because the coupling of the 1D and 2D
parts to the central site results in a (level) broadening of the
delta function, while reducing its height to some finite value.

We discuss briefly two prominent analytical properties
of T (ε, V ) which give in advance valuable insights into the
evolution of the I –V characteristics of the system. We infer
from the structures of the unperturbed Green functions that the
transmission probability T (ε, V ) does not change its analytic
form on changing simultaneously the signs of ε and V , i.e.,

T (−ε,−V ) = T (ε, V ), (25)

implying that under zero bias the transmission probability is
symmetric around ε = 0, i.e., T (−ε, 0) = T (ε, 0) (see
figures 4(a) and 5(a) below). This suggests in turn that a non-
zero bias always breaks this symmetry (see figures 4(b)–(d)
and 5(b)–(d) below). A simple manipulation of the tunneling
current (21) with the use of property (25) culminates in a
current symmetric around V = 0, i.e., I (−V ) = −I (V )

(see figure 6 below). We exploit this point in presenting our
numerical results for the transmission probability by giving
only the outcomes for positive bias voltages; the negative bias
results will then be obvious.

Another noteworthy aspect of the transmission probability
is that it vanishes at the electrochemical potential of the
graphene part,

T (−eV/2, V ) = 0, (26)

which follows directly from its definition (22) due to the
special structure of �2(ε), closely related to the LDOS of the
graphene, vanishing at ε = μ2; see the solid-line graph in
figure 2(b). This feature is completely due to the 2D graphene

part. The implication of this property is much more substantial
and global than it may seem at first glance: no matter what the
magnitude of the bias voltage V is, the transmission probability
will be always zero at this special point, ε = μ2 = −eV/2
(see figures 4 and 5 below).

In figures 4–6 are shown sequentially the graphs of
T (ε, V ) and I (V ) for several combinations of the hopping
energies v1 and v2. For convenience, we set t1 as the energy
scale. In figure 4, T (ε, V ) is plotted for several voltage biases
V , for various hopping energies v2, keeping v1 fixed at a non-
zero value. All the graphs in this figure share the common
structure in which there are two peaks, and between them is an
anti-resonant (zero-transmission) dip located at ε = −eV/2. If
we had considered a system composed of a single central site,
and connected to which were two identical 1D left and right
leads (i.e. if in the present system the 2D graphene part were
replaced by a 1D lead), we would then have �1(ε) = �2(ε)

and see only one resonant peak around ε = 0.0, and no anti-
resonant dip at all (see figure 7(a)). In the present system,
however, �1(ε) 
= �2(ε), and the inverse V-shape of �2(ε),
with its apex at ε = μ2 = 0.0, leads to the peak–dip–peak
structure in figure 4, and this is an effect coming purely from
the 2D graphene part.

As is demonstrated in figures 4(a)–(d), as we increase the
hopping energy v2, keeping v1 fixed, the heights of the two
peaks increase gradually, irrespective of the bias voltage V .
The increase in v2 simply means the increase of the effect of
the 2D graphene part on the system. This effect is combined
in the transmission probability (22) via �2(ε) and |Gr

11(ε)|2.
Since the transmission probability is mainly dictated by the
latter, it follows that, apart from the dip between the two
peaks, the features of T (ε, V ) are expected to be more and

5
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Figure 5. Transmission probability T (ε, V ) for v2 = 0.3. In the inset in (a) are the magnified portions of the same graphs around ε = 0.0.

Figure 6. The I–V characteristics of the system, at low temperature. Since the parameters of the system are all set equal, the curves in (a)
and (b) correspond to the transmission probabilities shown in figures 4 and 5, respectively.

Figure 7. Examples of the graphs of (a) the transmission probability and (b) the tunneling current of the imaginary 1D–dot–1D system.

more reminiscent of those of |Gr
11(ε)|2: a simple peak around

ε = 0.0 (not shown). This expectation is seen to be best
fulfilled at non-zero bias, as in figures 4(b)–(d).

As eV is increased from zero to higher values, from
figures 4(a)–(d), the anti-resonant dip moves to the left under
the control of equation (26); the two peaks shift also to the

6
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left, accordingly. What is noteworthy here is that the left
(right) peak diminishes (grows) monotonically with increasing
eV . This behavior is to some extent understandable because
we already know that a non-zero bias breaks the symmetry
of T (ε, V ). A more concrete accounting for this issue comes
from the potential profile that we use. Referring to figure 1(b),
as we increase eV , the energy-band diagram of the 1D (2D)
part goes up (down), with εc = 0.0, the (unbroadened) on-site
energy of the central site, kept fixed. As a result, the system
possesses a wider filled energy range on the 1D source part for
the incoming electron, while a wider empty energy range on
the 2D drain part for the outgoing electron. We remember also
that the on-site energy of the central site is actually broadened
due to its coupling to the 1D and 2D parts (but it is still centered
around ε = εc = 0.0), and that the features of T (ε, V ) are to
resemble more and more a simple peak around ε = 0.0, as we
stressed above. All these factors come together to culminate in
a transmission probability which, as eV is increased to more
positive values, tries more and more to locate itself around
ε = 0.0, with an amplitude more and more pronounced
simultaneously. If we now take also equation (26) into account,
we see that all the transmission probability graphs in figure 4
have actually a single peak with its left side cleaved at the foot.
In other words, the two peaks originate from the single energy
level of the central site.

To sum up, the effect of the 2D graphene part on the
system is always noticeable: in all graphs, irrespective of the
v2-values and the applied bias voltage, this effect always comes
into play by dividing the main original transmission peak into
two, and by so creating an anti-resonant dip. Although this
effect seems to diminish at high eV values of interest within
the given energy band, like the one in figure 4(d), it is still
easily discernible, hence significant.

The system, with a single central site, considered in the
present work might be seen to mimic a simple model to study
an STM system which is composed of the 1D part as the tip,
the 2D graphene part as the surface, and the single central
site as an adatom on the surface. We have investigated in a
previous work [13] such a similar system in which we have
considered a quasi-2D electron gas, imitating a metal surface
via a confining potential perpendicular to the surface, instead
of the 2D graphene part of the present work. In that work
we focused on the bound state which appeared at the energy
slightly below the surface-state low band edge; the origin of
the bound state was the coupling between the central site and
the quasi-2D part. In the present work there exists no such
bound state since the graphene part is purely 2D, without any
impurity; we do not contemplate any confining potential here.
In an STM experiment, the transmission properties of interest
can be attained mainly from the variation of the LDOS of the
adatom by controlling the position of the tip probe or changing
the voltage bias. In this sense, the coupling between the 1D
tip and the adatom seems to be more meaningful than that
between the adatom and the 2D graphene. (This does not lessen
the importance of the 2D graphene, however.) As was also
demonstrated in the previous work [13], we shall shortly see
that the coupling between the 1D tip and the adatom (i.e. the
single central site), too, imposes substantial effects on the
system.

To investigate the role of the 1D part on the system,
in figure 5 are plotted the graphs of T (ε, V ) for several v1

values. We keep v2 fixed so that the effect of the 2D graphene
part can be safely said to remain constant. All the general
features of the previous case are also markedly distinguished
here: the symmetric transmission probability at zero bias in
figure 5(a), and the asymmetry caused then by a non-zero bias
in figures 5(b)–(d), and the anti-resonant dip between the two
peaks with its location ruled by equation (26).

At zero voltage bias, the inset in figure 5(a), we see that
the heights of the two symmetric peaks are not influenced so
much by the change in the hopping energy v1 between the
1D and central site, no matter how big this change is. This
situation is different in its counterpart shown in the inset in
figure 4 (a), where the heights of the two peaks increase with
the increasing v2-value. Another discrepancy between figures 4
and 5 is that, for a non-zero bias voltage eV , the transmission
probability graphs in the latter cross each other and intertwine
unlike the case in the former where, although a small level
crossing is seen, the graphs are not intertwined. We note that
the graphs in figure 4 are highly height-ordered according to
the v2-values both on the left and the right sides, whereas
as in figure 5 the height order on the left side is completely
opposite to that on the right side. It is fairly difficult to
determine the v1 and v2 effects analytically on the heights,
crossings, height-ordering, and even positions of the two peaks
from T (ε, V ), equation (23), because of its intrinsic complex
structure coming especially from the 2D graphene part. Hence,
we do not resort to an analytical analysis, and are content with
the numerical results with the aim of drawing the attention of
the reader to the fact that the individual effects of v1 and v2

(i.e. those of the 1D and 2D graphene parts) on the system are
of different natures.

At a given voltage bias, as the 1D part–central site
coupling is strengthened by increasing the v1-value, the height
of the right peak reduces while that of the left one increases, as
seen in figures 5(b)–(d). The positions of the two peaks seem
dependent fairly strongly on the v1-value; in the corresponding
situation in figure 4, a v2-dependent peak position is hardly
noticeable. We see again in figures 5(b)–(d) that the changes in
the heights of the left and right peaks are not at the same rate at
a fixed bias. We notice also here that the right peak is favored
with broader and higher features compared to the left peak; this
is expected because the point ε = 0.0, that is the original place
of the on-site energy of the central site, is on the right. This is
best seen in higher eV values, e.g. figure 5(d).

As to the individual effect of increasing eV , figures 5(a)–
(d), we observe very similar characteristics to the previous
case: the anti-resonant dip and the two peaks move again to
the left because of equation (26), and the right (left) peak
grows (diminishes) monotonically with increasing eV . All
these result from the interplay between the potential profile
and the (broadened) eigenenergy of the central site around
ε = εc = 0.0. As eV increases, the transmission probability is
located closely around ε = 0.0, with its pronounced amplitude
at the same time.

We have come to the I –V characteristics of the system.
In order to best appreciate the function of the 2D graphene
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part, we include in the discussion the hypothetical 1D–dot–1D
system which is obtained by replacing the 2D graphene part
of the present system with a 1D right lead identical to the left
one; we give in figure 7 the related transmission probability
and I –V graphs of this system. The notable features are the
Lorentzian-shaped transmission probability curves centered
around ε = 0.0 and the symmetric I –V curves.

We display the I –V characteristics of the present system
in figure 6. There appear two important differences between
the 1D–dot–1D and 1D–dot–graphene systems. The most
noticeable one is that the current for a specific parameter
setting in the latter is smaller than the corresponding one in the
former. The discrepancy in the currents between figures 6(a)
and 7(b) is small, but significant, and that between figures 6(b)
and 7(b) is remarkably big. The clue to this situation comes
from figures 4 and 5, where the heights and widths of the
T (ε, V ) curves, of the 1D–dot–graphene system, are much
smaller than those of the 1D–dot–1D system; an example for
the zero-bias case is shown in figure 7(a). In other words, in
passing from the 1D–dot–1D to the 1D–dot–graphene system,
the central resonant transmission peak is largely destroyed,
being reshaped mostly by the 2D graphene part. Recalling
that the current at sufficiently low temperature is simply the
area under the transmission probability curve, equation (21),
it is then natural to end up with such smaller currents. The
destruction in the transmission probability curves is especially
prominent in figure 5; consequently, the current shown in
figure 6(b) is much smaller than that in figure 6(a), both of
which are to be compared with that in the 1D–dot–1D system
in figure 7(b).

The second important difference between the 1D–dot–1D
and 1D–dot–graphene systems is that we witness in the latter
an almost flat, practically zero-current region on a rather big
bias interval, centered around eV = 0.0. The appearance of
this zero-current region is totally unexpected, for its existence
cannot be anticipated, even with the help of the transmission
probability curves and the potential profile which we are using;
we say more on this in the following.

There are some features which are common to the both
cases considered in figure 6. As expected, the I (V ) curves are
symmetric, i.e., I (−V ) = −I (V ), so that it is enough in the
following, whenever necessary, to discuss only the positive-
eV part. Although they in general exhibit nonlinear behavior,
within the band (of the 1D part) of interest and the small
voltage bias considered, the current curves might be safely said
to be linear most of the time. They are generally composed
of three distinct parts: the almost linear parts in the interval
−0.5 < eV < −Vt and Vt < eV < 0.5, and between them
the flat, almost zero-current region. Here we have introduced
Vt > 0 as the threshold voltage; whenever Vt is reached
from smaller values, for example, the current starts to increase
suddenly, accommodates itself rather quickly to assume a new
slope, and then continues linearly. The threshold voltage Vt

for the system considered in figure 6(a) does not seem strongly
dependent on the v2-value. For the system in figure 6(b), Vt

appears, on the other hand, dependent on the v1-value; the
higher v1, the wider the zero-current interval.

Figure 6(a) displays the v2-dependence of the current
corresponding to the transmission probabilities shown in

figure 4. In order to understand the reason for the almost
zero-current behavior, we take a closer look at the positions
of the two transmission probability peaks, and remember that
the current at a specific bias voltage is simply the area under the
T (ε, V )-curve over the interval [−eV/2, eV/2]. When eV <

Vt, the two peaks of T (ε, V ) are largely outside the integral
range, resulting in an almost zero current. As eV increases,
the right peak, which is much broader than the left one, starts
to shift to the left so that it enters seemingly suddenly the
integral range [−eV/2, eV/2], as seen in figure 4. (The reader
is to note that it is only the right peak that contributes to the
current; the left one is always outside the integral range, for,
of course, the positive bias cases.) The result is an abrupt and
drastic increase in the current. The magnitude of the resultant
current depends on the v2-value; the higher v2, the bigger
the current. This should be obvious from the transmission
probability curves in figure 4: the higher v2, the bigger the
area under the T (ε, V )-curve (due to the right peak).

The v1-dependence of the current corresponding to the
transmission probabilities shown in figure 5 is presented in
figure 6(b). In this case, because the position of the right
transmission probability peak depends more strongly on v1

compared to the counterpart previous v2-dependence, the
magnitude and the shape of the current curve are distinctly
different; the higher v1, the smaller the current, within the
range of voltage bias of interest. The seeming linearity seen
in the previous case is not so ‘literal’ in this case. The reason
for the flat, zero-current range is the same as before; no need to
contemplate further. As to the reason for a smaller current, it
suffices to note from figure 5 that the area under the right peak
of the transmission probability curve is somewhat smaller than
the corresponding previous case. Lastly, as v1 is decreased,
with v2 kept fixed, the threshold voltage Vt becomes smaller
and smaller since the width of the right transmission peak gets
narrower, making the zero-current interval narrower, also. We
note, again, that although in this case the left transmission
peak appears to possess a broad feature, like the right one, it
contributes nothing to the current.

Before closing it seems in order to mention a subtle point.
In this work the 2D graphene part occupies the central part
because of its inherent zero-gap band structure around a K -
point. It is well known that both the static and dynamic
dielectric functions of a pure zero-gap superconductor have
singularities at zero temperature [21]. These singularities are
especially important under electromagnetic fields. To our
best knowledge there is no study probing similar situations
in 2D cases, notably in the 2D graphene (we are not talking
about carbon nanotubes). Our study completely excludes
the possibility of such singularities in graphene. If such
singularities happen to exist in graphene, the results of the
present work will certainly be affected, but, nevertheless, they
might be used as markers for probing comparatively the effects
of the presence of singularities.

In this work we study the electron transport problem in
a 1D–dot–2D-graphene system to find out its transmission
properties and I –V characteristics. Three important analytical
properties of the system seem to prevail: T (−ε,−V ) =
T (ε, V ), T (−eV/2, V ) = 0, and I (−V ) = −I (V ). In
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all T (ε, V ) graphs there appear two peaks, together with
a zero-transmission dip between them. All the T (ε, V )-
graphs possess in fact a single central transmission peak,
due originally to the single energy level of the central site,
with its left side cleaved at the foot. The destruction of the
transmission peak, leading to a small current, is a sheer effect
of the 2D graphene part. The I –V graphs of the 1D–dot–
graphene system always have an almost flat, practically zero-
current region on a rather big bias interval, a totally unexpected
result not seen in the 1D–dot–1D system. The almost zero-
current region results from the interplay between the applied
bias voltage, together with the bias profile used, and the two
transmission peaks. It is owing to the flat region, with the
two linear regions on two sides, that in a real application
the device proposed in this work might be used as a one-
way conventional diode, or a two-way Zener diode. We see
that only one of the two transmission peaks contributes to
the current, a property that seems important in manipulating
the system at hand to accommodate it according to particular
needs. The present work may be improved for the case in
which a chain of atomic sites or dots can be replaced with
the single site of the present system. The result would be a
new system having more transmission probability peaks. Since
the graphene part will now cause the device to act as some
kind of ‘transmission-peak shifter’, the thus-obtained device
might be easily engineered in choosing which transmission
peak(s) will contribute to the current by modulating the
on-site potentials of the central chain and by changing
the applied voltage; nevertheless, whether such a device
practically works as a promising device is not the issue of this
work.
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